Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Quasi-Precedence:
2nd1 > activate1 > from1 > cons2 > ncons2
2nd1 > activate1 > from1 > nfrom1
2nd1 > activate1 > from1 > ns1
2nd1 > activate1 > s1 > ns1
Status: trivial